ПРИРОДА, №8-9, 1922 год. Научные новости и заметки.

"Природа", №8-9, 1922 год, стр. 103-120

Научные новости и заметки.


АСТРОНОМИЯ.

Открытие рубидия на солнце. Новейшие воззрения физиков на строение материи и свойства атомов начинают находить себе в последнее время подтверждение в астрономических исследованиях. Особенно интересным в этом отношении является открытие проф. Рӧсселлом (Russell) линий рубидия в спектре солнечных пятен, теоретически предсказанное в 1920 году индусским ученым, профессором физики Калькутского университета Мег Над Сагой (Megh Nad Saha). Размеры настоящей заметки не позволяют нам подробно остановиться на теории, выдвинутой Сагой и приведшей его к предсказанию присутствия рубидия на Солнце, однако, чтобы дать читателям более или менее ясное представление о том, как новейшими воззрениями на свойства материи можно интерпретировать некоторые особенности физического строения небесных тел, попытаемся вкратце обрисовать ту картину внутри-атомных процессов, которая создалась в современной физике благодаря трудам многих ученых, главным образом Бора (Bohr) и Зоммерфельда (Sommerfeld).

В настоящее время на атомы перестали смотреть так просто, как смотрели еще недавно: атомы перестали быть однородными зернышками, совершенно одинаковыми для одного и того же элемента, но отличными по форме и свойствам в различных элементах, а оказались обладающими весьма сложным строением. Общая схема модели атома, предложенной Рӧзерфордом (Rutherford) и принятой и развитой Бором, представляется так: около очень маленького, относительно тяжелого, положительно заряженного центрального ядра вращаются по эллиптическим орбитам, подобно тому, как планеты вращаются около Солнца, электроны — носители отрицательного электричества, везде одинаковые и не имеющие никаких индивидуальных свойств. По одной и той же орбите могут вращаться и несколько электронов. Электроны вращаются только по так называемым возможным орбитам, т. е. таким, движение по поторым является устойчивым и может продолжаться произвольно долгое время. Теоретически число возможных орбит бесконечно велико, в действительности же оно ограничено некоторыми условиями, например, расстоянием между отдельными атомами. Размеры ядра весьма малы сравнительно с размерами даже самой близкой к нему орбиты. Число электронов в атоме равно атомному числу элемента, т. е. тому нумеру, под которым элемент значится в периодической системе. Для нейтрального (ненаэлектризованного) атома заряд ядра равняется сумме зарядов всех электронов. Так, например, нейтральный атом водорода состоит из ядра с одним простым зарядом и одного вращающегося вокруг него электрона, атом гелия — из ядра с двумя зарядами и двух электронов, атом лития — из ядра с тремя зарядами и трех электронов и т. д.

Электроны при своем движении вокруг ядра обладают некоторым запасом энергии, кинетической и потенциальной, причем, чем большую орбиту описывает электрон, тем большей энергией он обладает. Полный запас энергии атома складывается, следовательно, из запасов энергии отдельных его электронов. Нужно заметить однако, что электроны не остаются постоянно на одних и тех же орбитах: под влиянием причин, пока еще неизвестных, они могут перескакивать с одной возможной орбиты на другие, лежащие ближе к ядру; такие перескакивания сопровождаются уменьшением полного запаса энергии атома. Кроме того допустимы перескакивания электронов и на более далекие от ядра орбиты; так как в этом последнем случае полная энергия атома должна увеличиться, то потребное для перескакивания количество энергии должно быть взято извне. Для объяснения того, куда девается потерянная при перескакивании на более близкие к ядру орбиты энергия, Бор сделал одно смелое предположение, чисто гипотетическое, но которое тем не менее находит себе полное оправдание в результатах экспериментальных исследований последних десяти лет: он предположил, что при перескакивании электронов на более близкие к ядру орбиты теряемая энергия переходит в лучистую энергию, которая принимает форму колебаний известной частоты. Число колебаний в одну секунду в точности пропорционально количеству потерянной энергии. Каждому перескакиванию электрона с одной орбиты на другую соответствуют колебания вполне определенной частоты, а, следовательно, и вполне определенная монохроматическая линия в спектре излучения. Ряд перескакиваний электронов на каждую данную орбиту с орбит, лежащих дальше ее от ядра, дает в спектре линии, длины волн которых выражаются формулой одного и того же вида. Совокупность этих линий и представляет то, что называется серией. Серии были открыты в спектрах многих элементов; для водорода, например, известны три серии линий: Бальмеровская серия, серия в ультрафиолетовой части спектра и серия в инфракрасной части. Теорией Бора явление сериальных линий объясняется весьма просто. Так из нее следует, что в случае водорода линии Бальмеровской серии получаются, когда электроны перескакивают на вторую орбиту (счет орбит ведется обыкновенно от внутренней ближайшей к ядру орбиты); линии ультрафиолетовой серии получаются, когда электроны перескакивают на первую орбиту, и линии инфракрасной серии получаются, когда электроны перескакивают на третью орбиту.

Рассмотрим нейтральный атом, как совокупность центрального ядра с вращающимися около него электронами. Если будет приложена достаточная сила, то один из этих электронов может оторваться от ядра, оставив остаток атома с положительным зарядом. Такой процесс называется ионизацией, а атом, потерявший один электрон, — ионизированным. Однако отрывание электрона от ядра не происходит мгновенно: между начальной нормальной стадией электрона и конечной стадией его полного отделения существует много других промежуточных стадий, в которых электрон остается втечение более или менее долгого промежутка времени. Эти стадии соответствуют быть может различным орбитам, по которым электрон вращается вокруг оставшейся части атома. Так как перескакивание электрона на более далекие от ядра орбиты вызывает увеличение запаса полной энергии атома насчет энергии, взятой извне, то рассматриваемый процесс постепенной ионизации атома влечет за собой поглощение энергии, и именно энергии лучистой. Каждому перескакиванию электрона с одной орбиты на другую, более далекую от ядра, соответствует поглощение лучистой энергии, вполне определенной частоты колебаний, а, следовательно, и вполне определенная линия поглощения в спектре. Системы линий поглощения, соответствующие перескакиваниям электронов с одной данной орбиты на произвольные другие, лежащие дальше от ядра, составляют серии линий поглощения, аналогичные сериям в спектрах излучения. Если в каждом отдельном атоме перескакивания электрона на различные внешние орбиты начинаются с его нормальной стадии, при которой он находился на начальной своей орбите, то эти перескакивания вызывают в спектре одну серию линий поглощения; если же процесс ионизации атома начинается с таких его стадий, при которых электрон успел уже перескочить с начальной своей орбиты на некоторые другие, то дальнейшим его перескакиваниям будут соответствовать в спектре другие серии линий поглощения. В конце концов электрон может совершенно покинуть атом, ионизировав его. Но тогда возможно удаление от оставшейся части атома другого электрона (за исключением одного только водорода, атом которого содержит лишь один свободный электрон). Этот вторичный процесс ионизации может совершаться, подобно первому, постепенно и отражением его в спектре могут явиться различные серии линий поглощения. Обычно эти новые серии линий лежат в крайней ультрафиолетовой части спектра, так что, благодаря непрозрачности земной атмосферы для лучей с короткой длиной волны, они совершенно недоступны (по крайней мере для случая небесных тел) нашим наблюдениям.

Такова в общих чертах теория тех процессов, которые по современным научным представлениям протекают в атомах — этих чрезвычайно малых и в то же самое время чрезвычайно сложных частицах вещества. Как уже было сказано, эта теория начинает в последнее время находить себе применение в астрономических исследованиях, и первый, кто воспользовался ею для толкования некоторых особенностей строения небесных тел, был вышеупомянутый индусский ученый Мег Над Сага: благодаря его работам мы можем теперь ясно представлять себе, что должно происходить в тех гигантских лабораториях, которыми являются Солнце и звезды.

Температура солнечной атмосферы очень высока — приблизительно 6000° по Цельзию; температура солнечных пятен более низка — около 4000° по Цельзию. При таких высоких температурах атомы газов находятся в энергичном движении: они несутся по всем направлениям с очень большими скоростями, постоянно сталкиваются друг с другом и претерпевают сильные внутренние расстройства. Так как температура солнечной атмосферы выше температуры пятен, то движения атомов газов, ее составляющих, более быстры, а внутренние расстройства их более интенсивны; они, следовательно, скорее ионизируются. Если взять, например, натрий, который, вообще говоря, легко ионизируется, то при температуре в 6000° большая часть его атомов является ионизированной; в пятнах при температуре в 4000° число ионизированных атомов гораздо меньше. Но нейтральный атом натрия дает в спектре поглощения обычные линии натрия; ионизированные атомы натрия дают линии в крайней ультрафиолетовой части спектра. Поэтому в случае пятен, для которых число ионизированных атомов натрия сравнительно невелико, обычные линии натрия должны быть более интенсивны; такими в действительности они и наблюдаются. Калий, ионизирующийся легче натрия, производит тот же самый эффект, но только еще более резко выраженный. Для редкого щелочного металла рубидия процесс ионизации происходит еще легче. В солнечном спектре этот элемент совсем не дает никаких линий, что заставляет предполагать, что в солнечной атмосфере его атомы, являясь совершенно ионизированными, не могут поглощать излучений, доступных по частоте колебаний нашим наблюдениям. Однако при более низкой температуре солнечных пятен рубидий может обладать некоторым количеством атомов в нейтральном состоянии, которые могут поэтому дать в спектре пятен доступные для наблюдения линии поглощения этого элемента. Такого рода соображения и привели Сагу к предсказанию присутствия линий рубидия в спектре солнечных пятен, предсказанию, вскоре же подтвержденному проф. Рӧсселлом.

Атом кальция легко теряет два своих электрона. По мнению Саги, нейтральный атом кальция дает в спектре основную линию этого элемента λ 4227, в то время, как атом, потерявший один электрон, порождает ливии H и K. Так как эти последние линии одинаково выражены, как в спектре солнечной атмосферы, так и в спектре солнечных пятен, то из этого следует, что кальций, вообще говоря, является уже ионизированным в атмосфере Солнца. Интересно отметить, что те спектральные линии кальция, которые соответствуют перескакиваниям электронов на внешние орбиты с более близких к ядру орбит, резче выражены в спектре солнечных пятен. Теория вполне подтверждает этот результат наблюдений: при более низкой температуре пятен атомы кальция не зашли еще далеко в процессе ионизации и в них содержится много электронов, не успевших еще выйти из стадий, близких к начальной. Теорией Саги можно кроме того вполне удовлетворительно об’яснить и то остававшееся до сих пор весьма загадочным явление, что спектральные линии H и K, принадлежащие кальцию, этому сравнительно тяжелому элементу, встречаются в спектре самых высоких слоев солнечной атмосферы, далеко опережая в этом отношении пределы распространения линий натрия, магния и других более легких элементов. В самом деле, если допустить вместе с Сагой, что линии H и K принадлежат ионизированному атому кальция, а линия λ 4227 — его нейтральному атому, то в спектре более высоких слоев солнечной атмосферы, для которых ионизация, протекающая по всей вероятности только частично при высоком давлении более низких слоев, должна быть полной, линия λ 4227, представляющая нейтральный кальций, исчезнет, в то время как линии H и K, характеризующие ионизированный кальций, останутся хорошо выраженными.

Что же касается таких элементов, которые трудно ионизируются, например цинка, то из теории следует, что их линии должны быть слабее в спектре пятен, чем в спектре остальной части солнечной атмосферы; наблюдения в точности подтверждают это. То обстоятельство, что линии лития, элемента с большим трудом подвергающегося процессу ионизации, слабы в спектре пятен и совершенно отсутствуют в спектре солнечной атмосферы, свидетельствует о том, что количество этого элемента на солнце по всей вероятности незначительно.

Исходя из своей теории атомной ионизации, Сага в 1920 году предсказал, что главные линии рубидия, невидимые в солнечном спектре, должны оказаться заметными в спектре солнечных пятен. С целью проверки теоретического вывода Саги проф. Рӧсселл предпринял в следующем 1921 г. на Солнечной обсерватории на горе Вильсон обследование ряда фотографий спектра солнечных пятен, полученных астрономом этой обсерватории Брэккеттом (Brackett) при помощи башенного телескопа (tower telescope) с фокусным расстоянием в 150 футов и спектрографа с фокусным расстоявием в 75 футов. Эти фотографии дают спектр пятен протяжением вплоть до λ 8200. Тщательное обследование их проф. Рӧсселлом показало, что из числа имеющихся на них спектральных линий две в точности соответствуют по своему положению линиям рубидия: λ 7800.29 и λ 7947.64. Вероятная ошибка произведенных измерений не превышает 0.01 ангстрома. Таким образом присутствие рубидия в атмосфере солнечных пятен может считаться вполне установленным. Правда, в спектре солнечных пятен не усматривается никаких следов другой пары линий рубидия: λ 4215.57 и λ 4199.85, однако нужно заметить, что в нем и соотвеютвующая пара линий калия выражена чрезвычайно слабо тогда как линии калия в красной его части очень интенсивны.

Открытие проф. Рӧсселлом рубидия на Солнце является блестящим подтверждением правильности современных взглядов на строение и свойства материи. Оно открывает необъятный простор для новых исследований по вопросу о строении материи, исследований, в которых работа физиков и химиков должна идти рука об руку с работой астрономов. Великая проблема природы вещества одинаково важна как для Физики и Химии, так и для Астрономии, и поэтому для решения ее необходима совместная работа представителей всех трех наук. В этом отношении весьма важно основание в 1921 году в городе Пасадене в Калифорнии (вблизи которого находится Солнечная обсерватория на горе Вильсон) Физической Лаборатории Калифорнийского Технологического Института; в честь д-ра Нормана Бриджа (Norman Bridge), на средства которого Лаборатория будет устроена и оборудована, она названа Лабораторией Нормана Бриджа. Эта Лаборатория, директором которой назначен профессор физики Чикагского университета Милликэн (Millikan), предполагает работать над решением различных физических проблем и, между прочим, проблемы строения материи и природы излучения, в полном контакте с Солнечной обсерваторией. Надо поэтому надеяться, что совместный труд этих двух научных учреждений, к которым можно прибавить еще и третье, а именно существующую в Пасадене с 1916 года Химическую Лабораторию того же самого Калифорнийского Технологического Института, даст в ближайшем будущем результаты, одинаково важные и интересные, как для физиков и химиков, так и для астрономов 1).

К. А. Боборицкий.


Интерференционный метод определения угловых расстояний между компонентами тесных звездных пар и угловых диаметров звезд. Как известно, при наблюдении в трубу или телескоп небольшие небесные светила, например, спутники планет, астероиды, неподвижные звезды, представляют так называемые диффракционные явления, состоящие в том, что эти светила кажутся окруженными рядом светлых концентрических колец, слабеющих по мере удаления от центра к краям. В теории существует целый ряд диффракционных колец, но практически, даже при самых благоприятных условиях, их можно видеть не более двух. Не нужно думать, однако, что такая картина диффракционных явлений наблюдается всегда: она далеко не постоянна и зависит от формы отверстия инструмента. Когда отверстие кругло, мы видим концентрические кольца, когда же средняя часть отверстия покрыта какой-нибудь диафрагмой, так что свет проходит только через открытые крайние части, мы видим в фокальной плоскости объектива или зеркала вместо колец ряд попеременно светлых и темных параллельных полос. Поместив перед отверстием инструмента диафрагму, в которой вырезаны две узкие и симметрично расположенные щели, мы превратим наш инструмент в интерферометр, т. е. прибор, позволяющий наблюдать интерференцию света. Действительно, наряду с диффракционными явлениями он даст теперь уже и явление интерференции в виде ряда очень узких и резких полос, размещенных в направлении расхождения щелей и обязанных своим происхождением взаимодействию двух световых пучков, прошедших через обе щели. Хотя в этом случае мы будем иметь в поле зрения две системы полос: диффракционную и интерференционную, однако смешения между ними произойти не может, ибо полосы первой системы в отличие от полос второй системы всегда имеют неясный и как бы размытый вид, притом же они более широки и менее ярки.

При наблюдении интерференционных полос с целью определения угловых размеров небесных светил самым существенным является их ясность. Физо (Fizeau) первый в 1868 г. высказал ту мысль, что полосы могут существовать постоянно или, говоря иначе, иметь достаточную ясность только тогда, когда источник света имеет исчезающе малые угловые размеры. Чтобы понять сущность мысли Физо, представим себе трубу-интерферометр направленной на какую-нибудь светящуюся точку, например, звезду с весьма небольшим угловым диаметром; тогда в фокальной плоскости объектива появится система интерференционных полос. Представим себе теперь, что поблизости от рассматриваемой точки находится еще одна светящаяся точка, еще одна звезда, она в свою очередь даст особую систему интерференционных полос, и в результате мы будем иметь в своем поле зрения две системы одинаковых полос. Когда наши светящиеся точки лежат так близко одна от другой, что их полосы совпадают, то две системы складываясь взаимно усиливаются. Но коль скоро расстояние между точками начнет увеличиваться, то соответствующие этим точкам системы полос начнут расходиться, светлые и темные их члены, налагаясь друг на друга, станут терять свою отчетливость или, как говорят, ослабляться в ясности и, наконец, когда расстояние между точками возрастет до такой степени, что максимум одной системы совпадет с минимумом другой, то полосы исчезнут и никакой интерференционной картины мы не увидим. Почти то же самое произойдет и тогда, когда источник света будет обладать более или менее значительным диском, т. е. будет состоять из множества отдельных светящихся точек. И в этом случае мы заметим, что ясность видимости полос ослабевает с увеличением размеров источника света и существует такая предельная величина его, при которой полосы интерференции совершенно не различаются; вся разница заключается только в том, что теперь явление не будет идти с такой постепенностью, как прежде. Таким образом, прекращение видимости интерференционных полос является главным признаком того, что наблюдаемый источник света имеет измеримую угловую величину. Наводя поэтому трубу-интерферометр на какую-нибудь звезду и изменяя расстояние между щелями диафрагмы, мы получим вернейшее доказательство измеримости углового диаметра светила, если при надлежащем удалении щелей мы не увидим интерференционных полос. Наоборот, не изменяя относительного положения щелей и визируя инструмент на различные звезды, мы можем найти среди них такие, для которых явление интерференции исчезнет и которые мы в праве будем поэтому считать обладающими измеримыми угловыми диаметрами. Теория явления разработанная в деталях знаменитым американским физиком Майкельсоном (Michelson), показала, что интерференционные полосы исчезают тогда, когда угловая величина источиика света α, длина волны соответствующей световой радиации λ и расстояние между щелями диафрагмы d связаны между собою соотношением:

α = 1.22    λ    (радианов).
d

Таким образом, заметив момент исчезновения полос и определив для этого момента расстояние между щелями d, можно найти точное значение угловой величины источника света. Дело в сущности не меняется и тогда, когда источником света является не светило имеющее диск, а светило, имеющее два отдельных компонента, например, двойная звезда, — только в этим случае для момента исчезновения интерференционных полос будет уже иметь место соотношение:

α' = 0.5    λ    (радианов),
d

где α' — есть угловое расстояние между компонентами. Интерференционным методом можно, следовательно, очень точно определять угловые расстояния между компонентами таких звездных пар, которые или разделяются с трудом или даже вовсе не разделяются при обычных методах визуального наблюдения.

Хотя теоретически интерференционный метод определения угловых размеров небесных светил был разработан уже сравнительно давно, однако практически он получил мало применения. Им пользовались только в 1873—1874 гг. Стефан (Stephan) на Марсельской обсерватории, в 1892г. Майкельсон на Ликовской обсерватории (Сев. Америка) и в 1898 г. Гами (Hamy) на Парижской обсерватории. Объектом их исследований являлись спутники Юпитера и малая планета Веста, для которых были получены значения угловых диаметров, находящиеся в полном согласии с выведенными из обычных микрометрических измерений. Что же касается неподвижных звезд, то для них никаких определенных результатов получено не было: можно было только предполагать, что их диаметры имеют исчезающе малые угловые размеры. Несмотря на крайнюю чувствительность интерференционного метода, он после исследований Гами втечение 20 слишком лет совершенно не получал никаких астрономических применений, и только в самое последнее время им вновь воспользовались сначала для измерения угловых расстояний между компонентами тесных звездных пар, а затем для определения угловых диаметров звезд.

Предварительные исследования при помощи 40-дюймового рефрактора Иеркской обсерватории были произведены Майкельсоном еще в августе 1919 года. Так как эти исследования дали некоторые результаты, то было решено повторить их в большем масштабе, воспользовавшись для этого гигантским 100-дюймовым Гукеровским телескопом, только что перед этим окончательно монтированным на Солнечной обсерватории на горе Вильсон в Калифорнии. Чтобы иметь возможность применить метод к измерению угловых расстояний межлу компонентами тесных звездных пар, был изготовлен весьма простой прибор, состоящий из диска с двумя щелями, расстояние между которыми могло произвольно изменяться. Этот диск помещался на пути сходящегося пучка световых лучей, идущих от зеркала телескопа, причем благодаря тому обстоятельству, что он мог вращаться около главной оптической оси инструмента, щели могли занимать по отношению к этой оси различные положения, что было необходимо для измерения углов положения. Уже первые наблюдения с превращенным таким образом в интерферометр Гукеровским телескопом показали, что при измерении двойных звезд интерференционный метод имеет огромные преимущества перед обычным визуальным. Действительно, прежде всего выяснилось, что разрежающая сила телескопа в этом случае увеличивается по крайней мере в два раза; затем, что доброкачественность изображений не имеет большого значения для получения точных результатов, так как интерференционные полосы остаются хорошо видимыми и при плохих атмосферных условиях; наконец, что угловые расстояния и углы положения даже в очень тесных парах можно получать с такой же самой, если не большей, степенью точности, как и в широко расставленных парах.

Первым об’ектом исследования явилась Капелла, спектроскопическая двойная звезда, компоненты которой никогда не были видны в телескоп. Для нее астрономы Солнечной обсерватории Пиз (Pease) и Андерсон (Anderson) произвели, начиная с 30 декабря 1919 года, многократные наблюдения ясности интерференционных полос и получили в результате ряд значений угловых расстояний между компонентами и углов положения. В среднем взаимное удаление двух компонентов Капеллы оказалось равным 0".05. Сопоставляя свои результаты со спектральными данными, Андерсон нашел с весьма большой точностью все элементы орбиты Капеллы. Результаты Андерсона были вскоре подтверждены астрономом Солнечной же обсерватории Мериллом (Merill), который равным образом воспользовался интерференционным методом для измерения взаимного расстояния компонентов Капеллы и некоторых других двойных звезд. Между прочим в марте и апреле 1921 г. им были измерены угловые расстояния и углы положения в системе двойной звезды ? Большой Медведицы; компоненты оказались удаленными друг от друга на расстояние, равное в среднем 0".080. В самое последнее время интерференционный метод предположено ввести в употребление для измерения двойных звезд кроме Солнечной обсерватории еще и на других обсерваториях. Так, например, известный наблюдатель двойных звезд Эткен (Aitkeu) намерен воспользоваться им для измерения наиболее тесных звездных пар на Ликовской обсерватории, при помощи 36-дюймового рефрактора обсерватории.

Для определения угловых диаметров звезд Майкельсоном был предложен несколько иной тип звездного интерферометра: диафрагма с двумя щелями была заменена помещенной в верхней части телескопа стальной пластинкой длиной в 20 футов (6 метров), несущей на себе четыре плоских зеркала, из которых два крайних могут свободно перемещаться на пластинке. Эти два крайних зеркала и играют роль щелей в вышеописанном вращающемся интерферометре: свет, испускаемый источником, разделяется у их поверхностей на два пучка, которые после целого ряда отражений от системы зеркал вновь соединяются друг с другом, претерпев интерференцию. Раздвигая достаточно широко два крайних зеркала, можно достигнуть такого положения, при котором полосы интерференции исчезнут, и тогда по формуле ? = 1.22 ?/d можно определить угловой диаметр источника света. Пользуясь этим прибором, прилаженным к Гукеровскому телескопу, Пиз 13 декабря 1920 года впервые определил угловой диаметр звезды, а именно, звезды Бетельгейзе или ? Ориона. Действительно, оказалось, что при наблюдении этой звезды полосы интерференции совершенно исчезают, когда взаимное удаление крайних зеркал равно 10 футам (3 метра). Принимая за среднюю длину волны света этой звезды длину в 5500 A Пиз получил для ее углового диаметра значение 0".046, что хорошо согласуется с теоретическими результатами Эддингтона (0".051) и Вильсинга (0".042). Так как параллакс Бетельгейзе равен приблизительно 0".018, то угловая величина в 0".046 соответствует диаметру в 384.000.000 километров. Среднее расстояние Земли от Солнца равно 150.000.000 клм., следовательно, если бы в центре гигантского сферического об’ема, занимаемого Бетельгейзе, находилось наше Солнце, то Земля могла бы свободно обращаться вокруг него, не выходя из пределов объема.

Следующими объектами исследований Пиза явились Арктур и Антарес. Для первого было замечено исчезновение интерференционных полос при взаимном удалении зеркал интерферометра на расстояние в 20 фут. (6 метров), для второго — на расстояние в 12 фут. (3,6 метр.). Принимая среднюю длину волны светового излучения Арктура за 5600 A, а Антареса — за 5750 A, Пиз получил для угловой величины диаметров этих звезд соответственно значения: 0".022 и 0".040. Если принять для Арктура значение параллакса в 0".095, то линейная величина его диаметра окажется равной 33.600.000 клм. Равным образом для Антареса, если считать его принадлежащим к звездам Скорпионовой группы, параллакс будет равен 0".0085, что соответствует линейной величине диаметра в 688.000.000 клм. Целый ряд других красных и желтых звезд был обследован Пизом и для некоторых из них (Альдебаран, Поллукс, ? Кита, ? Пегаса) было подмечено ослабление ясности интерференционных полос, так что главной целью дальнейших наблюдений этих звезд должно явиться точное определение того предельного расстояния между зеркалами интерферометра, при котором интерференционные полосы совершенно исчезают: знание этого расстояния даст нам возможность без труда определить и угловые диаметры исследуемых звезд.

Таковы первые результаты новейшего применения интерференционного метода к измерению угловых диаметров неподвижных звезд. О значении их говорить не приходится: они лишний раз подтверждают теорию Рӧсселла (Russell) о существовании во Вселенной звезд-гигантов, т. е. звезд, находящихся в первоначальной стадии эволюции и обладающих поэтому чудовищными размерами и весьма незначительной плотностью, не превышающей даже и одной тысячной доли плотности атмосферного воздуха. Хотя спектроскопический метод Адамса (Adams) определения абсолютных величин звезд уже несколько лет тому назад доставил вполне определенные доказательства теории Рӧсселла, однако доказательства, добытые посредством интерференционного метода, гораздо более очевидны. Нужно только пожелать, чтобы этот метод получил дальнейшее развитие и был применен к определению диаметров по возможности всех звезд-гигантов.

Что же касается других возможных астрономических применений интерференционного метода, то, как кажется, Майкельсон предполагает воспользоваться им дли измерения смещений звезд вблизи Юпитера с целью подтверждения теории тяготения Эйнштейна. Действительно, из этой теории следует, что если наблюдать какие-нибудь звезды вблизи Юпитера, то гравитационное поле этого последнего будет оказывать на идущие от них световые лучи притяжение; эти лучи будут отклоняться от своего прямолинейного направления и видимые положения звезд изменятся. Дело обстоит таким образом совершенно также, как и при прохождении световых лучей вблизи солнечного диска, но в то время, как для наблюдения смещений звезд вблизи Солнца приходится пользоваться редкими моментами полных солнечных затмений, Юпитер почти всегда готов к услугам наблюдателей и только необходимы более точные методы наблюдений для обнаружения менее значительных смещений (для Юпитера максимальное отклонение светового луча у края диска планеты составляет, по Эйнштейну, всего только 0".017). Майкельсоном уже придуманы некоторые формы интерферометров, пригодные для означенной цели, и предварительные исследования с помощью Гукеровского телескопа по всей вероятности скоро начнутся. Несмотря на тщательность теоретической разработки метода, существуют однако опасения, что атмосферные и некоторые другие неустранимые влияния будут сильно затруднять наблюдение интерференционных полос, вследствие чего метод может оказаться безрезультатным 2).

К. А. Боборицкий.


Туманности с самыми большими радиальными скоростями. В циркуляре Ловеллской обсерватории от 17 января 1921 года находится сообщение директора обсерватории Слайфера (Slipher) о том, что две небольшие спиральные туманности, носящие в Новом Общем Каталоге Дрейера (New General Catalogue — N. G. С.) нумера 584 и 936, обладают самыми большими из известных до сего времени радиальных скоростей, т. е. скоростей по лучу зрения. Первая из этих туманностей — туманность N. G. С. 584 (R. A. lh 27m; D. — 7° 16'.8), представляет туманность с ярким ядром и с некоторыми незначительными деталями в окружающей его светлой части. Ядро туманности зарегистрировано в Bonner Durchmusterung как звезда 9.7 вел. Спектрограмма туманности, полученная при 28-часовой экспозиции в промежуток времени с 31 декабря 1920 года по 14 января 1921 года, показывает спектр, приближающийся к солнечному типу, а смещение спектральных линий свидетельствует о том, что туманность удаляется от нас с непостижимо огромной скоростью, равной 1800 клм. в секунду.

Вторая туманность — N. G. С. 936 (R. А. 2h 23m; D — 1°33') равным образом обладает большим ярким ядром, имеющим с обоих сторон отростки, напоминающие ушки колен Сатурна; общая длина ядра, включая и эти отростки, составляет 85". Ядро представляется окруженным слабо светящейся туманной оболочкой, овальной формы, длина которой равна 3'.5, а ширина — 2'.5. Для получения спектрограммы туманности потребовалась 34-часовая экспозиция втечение того же самого промежутка времени, что и для туманности N. G. С. 584. Сфотографированный спектр оказался солнечного типа, а смещение спектральных линий показало, что туманность удаляется от нас со скоростью, равной 1300 клм. в секунду. Таким образом, обе туманности отличаются общим для всех быстро движущихся спиралей свойством: двигаться в пространстве, удаляясь от солнечной системы.

К. А. Боборицкий.


ГЕОЛОГИЯ и МИНЕРАЛОГИЯ.

Искусственный жемчуг. Уже отмечалось на столбцах "Природы", что искусственный жемчуг японца Микимото, получаемый путем операции живой раковины, произвел полную революцию на рынке драгоценного камня.

Нарастающий естественным путем вокруг небольшого зерна или выступа перламутра, этот жемчуг внешне ничем не отличим от настоящего. Галибург и Ризигер продумали особый аппарат и путем фотографирования уже просверленной жемчужины смогли отличать жемчуг Микимото от настоящего. Казалось, что найден метод отличия, однако в Парижскую Академию Наук было представлено новое исследование проф. Бутана, который по изучении новых партий японского жемчуга, обнаружил полное тождество природных и японских жемчужин, и в категорической форме на основании новых результатов исследования установил невозможность практического их отличия.

Несомненно, что это открытие Микимото грозит серьезными потрясениями рынку камня и может отразиться на положении добычи жемчуга в Индии, достигавшей в последние годы перед войной ценности в 10 миллионов золотых рублей.

А. Ф.


Справочная книга по минералогии Дана. Вся научная и текущая рабога минералога неизбежно протекает при содействии настольной книги Дана "Textbook of Mineralogy".

В середине 1922 годa сокращенное издание этой книги после 25-летнего перерыва вышло новым изданием с 1050 рисунками в тексте на 729 страницах. Для минералога — это целое событие, и с нетерпением мы будем ждать этой книги в России, хотя ее стоимость у нас будет около 500 миллионов рублей.

А. Ф.


ХИМИЯ и ТЕХНИКА.

Сжижение углерода. Попытки превратить углерод в жидкое состояние не новы; они известны уже с 1849 г. (Desprez), в 1893 г. Муассану удалось в особой печи получить маленькие алмазы насыщением железного сплава углерода и охлаждением массы под давлением. По его мнению, углерод из твердого состояния тотчас же переходит в газообразную фазу, и поэтому его нельзя сплавить. Ненадолго до начала войны Луммер в Бреславле наблюдал на положительном кратере дуговой лампы, горевшей под давлением ⅘—2 атмосфер, явления, заставившие предположить сжижение угольных электродов, химически почти чистых, но точное разрешение этой проблемы Луммелю не удалось. Недавно химику Э. Ришкевич удалось при исследовании графита произвести сжижение углерода в таких количествах, что по его словам сомнение в успехе этого опыта совершенно исключено. Его аппаратура чрезвычайно проста и состоит из ящика длиной в 25 куб. см. 3), высотой в 7 куб. см., 4 стенки — верхняя, нижняя и обе боковые состоят из 15 мм. угольных пластинок, пустое пространство замыкается по направлению оси длины двумя электродами диаметром в 10 куб. см., последние с одного конца срезаны призматически, так что они точно входят в пустое пространство — 7 × 8 куб см., внутренность ящика наполняется графитом и включается в огнеупорный материал, чтобы по возможности избежать потери теплоты; для нагревания применяется трехфазный ток в 220 вольт (состоящий из трех переменных токов, фазы которых отделены друг от друга на 120° каждый), который он трансформирует, например, до 128—232 вольт, 500—560 ампер; в то время как опыты Муассана постоянно продолжались лишь несколько минут, в данном случае нагревание производится в течение 8—12 часов. Уже после первых 2—4 часов углерод электродов превращается в чистейший графит, содержащий 99,6—99,8% углерода, в конце же нагревания призматически заостренные электроды оказываются совершенно сплавленными и округлившимися. На их поверхности были найдены ясно различимые застывшие частицы, но все эти явления наступали лишь после того, как углерод перешел в графит, т. е. при химически чистом материале. При микроскопическом исследовании (увеличение 100—200-кратное) получалась обычная картина. Элементарный анализ электродов дал содержание золы в 0,10%. Сплавленная масса вообще не давала осадка. Для того, чтобы убедиться, что здесь не образовалось соединение углерода, были произведены еще опыты сплавления со специально приготовленным графитом, содержащим 99,98% углерода, который показал те же микроскопические явления.

Уже Луммель указал на необходимость применения токов меньшей силы и употреблял 15-20 ампер в секунду на куб. см., теперь Э. Ришкевич дошел до применения 5—10 ампер, затем он пользовался не световой дугой, подобно Муассану, при которой теряются 80% выделяющейся теплоты, а указанной выше аппаратурой, достигающей более равномерного нагревания всего угля. Так как на ряду со сплавленными местами находились и такие, на которых осаждались пары углерода (сублимация), то этот факт подтверждает то предположение, которое существовало уже, а именно, что точка плавления углерода должна быть весьма недалека от температуры его пара. В указанном опыте было, конечно, невозможно определить температуру плавления, но работы в этом направлении продолжаются. Во всяком случае продуктом плавления является чистый мелкий графит.

В кругах не специалистов часто интересуются вопросом плавления углерода, потому что с этим связана надежда, что из сплава он может выкристаллизоваться в виде алмаза, однако, на самом деле это не наблюдается.

М. Блох.


Степень сладости естественных и искусственных суррогатов сахара. На состоявшемся в 1921 г годичном собрании Немецкого Бунзеновского Общества проф. Т. Паули из Мюнхена произвел следующий любопытный опыт.

Пауль вместе с Taufel’eм установили, что в отношении к наиболее значительным, встречающимся на практике суррогатам сахара — сахарину и дульцину - не замечается строгой пропорциональности между степенью сладости и концентрацией их, т. е., что двойное количество суррогата не удваивает чувства сладости по сравнению с сахаром. Пауль далее установил, что степень сладости водного раствора, содержащего одновременно и сахарин, и дульцин, приблизительно равна сумме степеней сладости отдельных составных частей, вот цочему степень сладости сахарина при прибавлении менее сладкого дульцина сильно повышается, если к 280 мгр. сахарина в литре воды прибавить 120 мгр. дульцина, то раствор будет так же сладок, как раствор, содержащий 535 мгр. сахарина, степень сладости почти удвоилась при экономии примерно 33% смеси суррогатов сахара. Пауль объясняет это следующим образом: сахарин и дульцин в маленьких концентрациях несравненно более сладки, чем в концентрированных растворах; с другой стороны, степень их сладости складывается, повышение степени сладости обоих веществ при меньших концентрациях можно, таким образом, комбинировать. В указанном примере 280 мгр. сахарина в одном литре воды соответствуют, примерно, 7% раствору сахара, а раствор 120 мгр. дульцина — 3% раствору сахара, сумма степеней сладости равна 10% раствору сахара. Для достижения этой цели нужно или 535 мгр. сахарина или 1430 мгр. дульцина. Смесь этих обоих суррогатов Пауль называет "Sussstoffpaarling". В дополнение к этим своим выводам докладчик предложил членам съезда произвести маленький опыт, так как химики привыкли приходить к заключению на основании опытной проверки. Тем поразительнее был результат. Чтобы победить существующий предрассудок против искусственных суррогатов, Пауль предложил пронумерованные чашки чая, — в одних был сахар, в других были его суррогаты, — 17 членов съезда приняли участие в этом опыте, — в 34 случаях, в которых применялся только сахар, 21 раз было высказано утверждение, что это суррогат, напротив, в 51 случае применения суррогата 19 раз предполагался сахар, когда же Пауль угощал поочередно то чаем с сахаром, то чаем с суррогатами, оставляя в неведении, чем чай подслащен, то из 16 случаев в 15-ти был найден более вкусным тот чай, в котором, по утверждению проф. Пауля, содержалась смесь сахарина и дульцина. В виду возможности, что чай теряет свой вкус от прибавления суррогатов, был произведен тот же опыт с чистой водой, - в 32 случаях 23 раза смесь была признана более вкусной, чем сахар. Большое веселье вызвало сообщение Пауля, что среди лиц, принявших участие в этом опыте, находились крупнейшие химики и многие из них до опыта утверждали, что они безусловно сумеют отличить вкус сахара от его суррогатов, но тем не менее они приняли суррогат за сахар.

Значение опытов Пауля заключается в научном обосновании комбинаций дульцина и сахарина, благодаря которым не только достигается колоссальная экономия в потреблении, но и прекрасный вкус, хотя конечно, не заменяется питательность сахара.

(Die Umschau, 1921, 603). М. Блох.


Изотопы железа. В сентябрьском номере "Nature" помещена коротенькая заметка Астоне о природе атомов железа. Тщательные опыты, поставленные с этим элементом, показали, что в своей основе его надо считать простым элементом с ат. весом в 56, но что в небольшом количестве повидимому, к нему примешан изотоп ат. веса 54. "Последнее лишь вероятно, но еще не доказано окончательно", как говорит сам Астон.

А. Ф.


С 27 июня по 2 июля в Лионе созывалась Международная Конференция по чистой и прикладной химии. Международная Комиссия по атомному весу реорганизована, в виду новейших работ по изотопам, в Комиссию по элементам.

(Nature, 13/V 1922).


Производство автомобилей в Америке за 1920 г. В "National Automobile Chamber of Commerce" Соединенных Штатов Америки опубликован годовой отчет за 1920 год, озаглавленный: "Facts and Figures of the Automobile industry". В нем мы находим следующие цифры: число автомобилей, бывших в конце 1920 года, составляет 9,211.295, т. е. 83% всего числа автомобилей в мире — исчисляемых в 10,992,278. Это составляет для Америки отношение одного автомобиля на 11 жителей. Употребление автомобилей развивается преимущественно теперь в деревне, где автомобиль является почти необходимой принадлежностью сельского хозяйства. 33% автомобилей приурочено к поселениям, имеющим менее 1000 жителей. Производство за 1920 г. превосходит на 12% производство 1919 года. Оно составляло 2,205,000 автомобилей ценностью в 2.233 миллиона долларов, т. е. в среднем, приблизительно, 1,000 дол. за автомобиль. Вывоз в 1921 году вдвойне превосходит вывоз 1919 года и составляет 170,761 автомобилей стоимостью 294,891,742 долл. Вывоз этот направлен преимущественно в Англию, затем в Швецию, Испанию, Норвегию и Голландию. Из других стран в этом же году было ввезено из Франции 26,850 автомобилей, из Канады — 23,054, из Италии — 124,000, из Англии — 8,450.

(Genie Civil, 1921).


ФИЗИКА.

Конкурс на наиболее понятное изложение принципа относительности. Издающийся в Нью-Йорке журнал "Scientific American" сообщает результат объявленного им конкурса на наиболее понятное изложение принципа относительности (5000 дол.), причем это изложение не должно было содержать больше 3000 слов. Было представлено 300 работ, большинство из Германии, затем из Англии, Америки и других стран, не отсутствует на одна страна в мире, даже из Австралии, Кубы, Мексики, Ямайки были присланы работы. Были представлены статьи выдающихся ученых: Шликем, Пиккерингом, Русселем, Беккерелем, но победителем оказался чиновник Британского патентного бюро — некий Л. Больтон. Его работа отличается ясностью изложения основных предпосылок и последовательностью и строгой логичностью изложения. Специалист с удовольствием прочтет эту работу, но большинство средне образованных людей и даже весьма образованных мало что из нее поймет. Оригинально, между прочим, то, что в работе Больтона даже не упоминается имя Майкельсона, хотя именно его знаменитый опыт является непосредственным поводом ко всему учению об относительности.

М. Блох.


Что делается с веществом при больших давлениях. Поразительные опыты Bridgman’a обнаружили особенные свойства тел, подвергаемых давлению в 20 т. атмосфер. Уже при 12 тыс. фосфор переходит в особую разность, напоминающую графит и несгораемую. Параффин при тех же давлениях делается тверже стали. Особенно сильно меняется электропроводность, увеличивающаяся, напр., для К и Na в 10 раз.

Нетрудно видеть, как велико значение этих данных для геологии, для которой уже на глубинах в 40 километров должно устанавливаться давление в пределах 10—15 тыс. атмосфер.

Л. Ф.


ГЕОГРАФИЯ.

Экспедиция на "Куэсте". После смерти Сэра Эрнеста Шэклтона, снаряженная им экспедиция продолжала согласно его воле свои работы по исследованию Антарктики (см. "При¬ рода" 1922 г., № 1—2 и № 3—5) Под руководством нового начальника Вилда (Wild) 15 января 1922 г. экспедиционное судно "Куэст" оставило берега Южной Георгии, где были попутно произведены геологические исследования и направилось на восток-юго-восток, к югу от Южно-Сандвичевых островов, где был исследован вулканический остров Саводонского, но дальнейшему продвижению к югу препятствовали многочисленные айсберги. 4 февраля был достинут сплошной лед и 12 того жe месяца крайняя южная широта, до которой дошла экспедиция — 69°18'S и 17°11'30''O.

Слишком сто лет тому назад (в 1820 г.) русская экспедиция под начальством Беллингсхаузена посетила впервые эти места. По быстрой смене глубин можно было заключить о близости земли.

Дальнейшее продвижение вперед сильно затруднялось паком. Поэтому, согласно кратким сведениям, почерпнутым из июнского номера "Geogr. Journal" и "Geogr. Zeitchr." 1922, № 7—8, "Куэст" направился на запад, с тем чтоб на северо-западной оконечности моря Уэдделля южнее Южно-Оркитских островов проверить существование земли, на которую указывал Росс, проходя эту зону 10 февраля 1843 г. В море Уэдделля был встречен пак, в котором пройдено до сотни миль, при чем судно, затертое льдом, было отнесено за 35 миль от намеченного пункта. Измерение глубины показало 4440 метров. Обзор местности также не дал положительных результатов, что говорит против указания Росса о существовании здесь земли. Освободившись после семидневного плена экспедиционному судну удалось вернуться к Южно-Шотландским островам, где у Слоновых островов предполагалось произвести высадку, однако разразившийся шторм не дал возможности высадиться и по израсходовании всего угля "Куэст" вернулся к исходному месту своего плавания — в Южную Георгию.

Экспедиция Вилда совершила 6000 миль, из них 2800 во льдах.

За время отсутствия "Куэста", китобойное судно "Вудвалль" доставил прах Шэклтона из Ла Платы обратно в Южную Георгию. 5 апреля состоялось в Гритвикен погребение тела сэра Эрнеста Шеклтона на кладбище китобойной станции в Южной Георгии на месте его кончины.

18 апреля "Куэст" отправился в обратный путь через Тристань да Кунью. Через дна месяца "Куэст" прибыл в Капштадт, посетив на своем пути остров Тристань да Кунью, который в течении полутора лет не посещался ни одним судном и население, состоящее из 127 душ, испытывало нужду в жизненных припасах. После "Куэста" прибыл на этот остров пароход со священником и учителем, а также материалами для устройства радиостанции с радиусом действия в 1000 миль, которая будет, между прочим, сообщать метеорологические сведения в Капштадт.

П. Виттенбург.


БОТАНИКА.

Гималайские исследования. Английская печать отмечает появление интересной работы W. J. Buchonan’a, который продолжал в последние годы географические исследования Гималаев, именно в тех местах, которые были так блестяще описаны покойным ботаником J. D. Ноокеr’ом в его замечательном труде "Himalayan Journal", к которому он дает много ценных дополнений и поправок. Этот труд озаглавлен так: In the Footsteps of Hooker through Sikkim and Nepal "Bengal Past and Present", vol. XIV, 1917, Calcutta.

И. П.


Жизнь и письма ботаника Гукера. Недавно появился весьма ценный труд, посвященный памяти знаменитого ботаника J. D. Hooker’a, жизнь и деятельность которого составили эпоху в истории естествознания, составленный одним из его близких друзей T. Н. Huxley 4). Книга является незаменимым справочником для всех интересующихся деятельностью этого великого ученого и должна иметься в главнейших ботанических книгохранилищах.

И. П.


Гербарий Буассие. По Полученным недавно известиям с Запада гербарий знаменитого исследователя флоры средиземноморских стран и ближнего Востока Э. Буассие, до сих пор хранившийся в особом институте, на берегу Женевского озера в Шамбези близ Женевы, в 1918 г. после смерти его вдовы, перенесен в город, в здание Женевского Университета, в ботанический институт проф. Р. Шода. Туда же поступила богатейшая библиотека Э. Буассие, собранная им лично и значительно пополненная его наследниками. Консерватор этого Музея, известный ботаник G. Beauverd перешел на службу в ботанический институт Университета. По всем запросам, касающимся растений этого гербария, рекомендуется обращаться по адресу: проф. R. Chodat, l’Institut botanique de Geneve, Suisse.

И. П.


Растения Линнея и Тунберга. Во всех вопросах систематики растений огромную роль, как известно, играют подлинники тех растений, по которым были описаны наиболее широко распространенные так называемые основные виды. Гербарии Линнея и его ученика Карла-Петра Тунберга втечение более века служат основой для суждения о виде при рассмотрении различных мнений ученых о том или ином растении из числа так называемых линнеевских видов или "Линнеонов", как стали их называть в последнее время. Гербарии Линнея хранятся в Лондоне и составляют гордость британской нации и в частности Линневского общества и уже издавна служат предметом особого внимания английских систематиков. Еще недавно ботаник Dr. Daydon Jackson оказал большую услугу науке изданием полного списка линнеевского собрания растений, "Index to the Linnean Herbarium", который появился в свет в виде приложения к октябрскому 1912 г. выпуску Proceeding of the Linnean Society. Недавно появился каталог другого знаменитого гербария С. P. Thunberg’а, составленный Dr. Н. О. Juel профессором ботаники Упсальского Университета, где хранятся подлинники гербария этого первого исследователя флоры Японии. В этом каталоге перечислены все растения, собранные впервые в Капской колонии, Индии и Японии Тунбергом. К этому труду приложена его биография, карта его маршрут, а также рисунок памятника, поставленного ему и другому исследователю японской флоры — Кемпферу в окрестностях Нагасаки 5). Заслуживает также быть отмеченной коллекция рисунков японских и африканских растений Тунберга, хранящаяся в библиотеке Петроградского Ботанического Сада. Эта коллекция, составляющая одно из драгоценнейших приобретений сада, была куплена в семидесятых годах прошлого столетия в Амстердаме на средства, собранные по подписке среди ботаников Петроградского Сада. За недостатком казенных средств ученые на свои скудные заработки обогатили учреждение единственной по своей научной ценности коллекцией.

И. П.


Австрийская ботаническая экспедиция в Южный Китай. Венская Академия Наук начала опубликование предварительных сведений о работах этой экспедиции. В состав ее вошли известный ботаник и путешественник по Курдистану и Месопотамии, Handel-Mazzetti и дендролог Camillo Schneider. Свои исследования эти ученые начали из областей, которые дали науке драгоценнейшие материалы благодаря миссионеру Delavay, Farges, и энергичному исследователю G. Forrest. В марте 1914 года начались эти исследования и окончились в 1918 году. Втечение этих лет путешественники, начавшие работу от г. Юннань-фу, работали в области горных хребтов на верховьях Голубой реки между 27° и 30° с. ш., в пределах китайских провинций Юннань с Сы-чуань. В 1915 г. посетили район Мен-цзы, затем бассейны Красной реки и Мэконга, затем были обследованы неизученные районы провинций Гуй-чжоу и Ху-нань.

Таким образом путешественники обследовали следующие районы: a) тропический район окрестностей Manhao на Красной реке; b) Юннанское плато (субтропический этаж до 6,000 ф. и умеренный 6000—9500 ф.); с) высокие нагорья юго-зап. части провинции Сы-чуань и сев. части Юннанской провинции (здесь установлены этажи растительности: субтропической 5—8000 ф. или местами 9000 ф.; умеренно-теплой 8000 или местами 6200—8200 ф. и на очень сухих склонах до 9500 ф. умеренной 8200—12,500 ф., холодно-умеренной 12—14,000 ф., высоко горной 14,600—16,400; d) высокие нагорья сев. Бирмы и западн. части провинции Юннань (умеренно-теплой 6-9000 ф. или местами до 10,800 ф.; умеренной 8,200—11,500 ф., холодно-умеренной на западных склонах до 13,500 ф. и на восточных — до 14,400 ф. и, наконец, высокогорной от 13,800 до 14,400 ф. Собраны богатейшие материалы по флоре этих стран, обещающие дать много нового. Из числа наиболее замечательных находок следует отметить открытие нового хвойного дерева Taiwania cryptomeroides для Китая, кедра на р. Меконг, дикого ореха (Juglans regia), рододендронов с черными цветами и бесхлорофильной сапрофитной орхидеи до 8 фут. высотой — новых для науки.

Первые результаты обработки растений, собранных этой экспедицией уже появились в печати в трудах Венской Академии Наук (1920—1921), а также в известном издании Karsten-Schenck, "Vegetationsbilder", Iena, 1922, Reibe 14.

И. П.


1) "Publications of the Astronomical Society of the Pacific", vol. 33, n03 194, 196, 1921. (стр. 107.)

2) "Publications of the Astronomical Society of the Pacific", vol. 32, n0 185: 1920; vol. 33, n06 191, 193, 194, 196; 1921. (стр. 112.)

3) Именно так — "куб. см." — напечатано в тексте журнала. (прим. составителя) (стр. 114.)

4) L. Huxlay. Life and letters of Sir J. D. Hooker, 2 vol. London I. Murray 1918 г. (стр. 118.)

5) Dr. Н. О. Juel. Plantae Thunbergianae Uppsala et Leipzig, 1918. 8 vol. 462 pp. (стр. 119.)